Chapter 4.1 part 3

F is a field We study $F[x]$
In both rings ∇_{2} and $F[x]$, the Fundamental Theorem of Arithmetic holds. Th li Every integer-element ∇_{L} - except 0 and $\neq 1$ can be written as a product of primes in an essentially unique way
Th 4.4 Every polynomial -element of $F[x]$ - except constants can be written as a product of irreducibles in an essentially unique way
Toxeeptions are the same: these are O and the units in the ring (7 or $F[x]$)
Euclid's Lemma (in ∇_{L})
Thill. $a, b \in \pi, b>0$
There exist unique $q, r \in \mathbb{Z}$ such that

$$
a=b q+r \quad 0 \leqslant r<b
$$

either $\gamma=0$ or< $\gamma<b$
Touclid's Lemuea (in $F[x]$)

$$
\text { Th } 4.6 \quad f, g \in F[x] \quad g \neq O_{F}=O_{F[x]}
$$

There exis lenique $q, r \in F[x]$ such that

$$
f=g q+r \text { either } r=O_{F} \text { or } \operatorname{deg} r<\operatorname{deg} g
$$

If Uniqueness $f=g q_{1}+r_{1}$ either $r_{i}=O_{F}$ or deg $r_{i}<\operatorname{deg} \quad i=1,2$

$$
f=g q_{2}+r_{2}
$$

Nell use Jalap $\operatorname{Jeg}\left(r_{1} \pm r_{2}\right) \leq \max \left(\operatorname{deg} r_{1}, \operatorname{deg} r_{2}\right)$

$$
g\left(q_{1}-q_{2}\right)=r_{2}-r_{2}
$$

Assume, for the sake of a contradiction, that $q_{1} \neq q_{2}, r_{1} \neq r_{2}$.
By Th 4,2,

$$
\begin{array}{r}
\operatorname{deg} g+\operatorname{deg}\left(q_{2}-q_{2}\right)=\operatorname{deg}\left(x_{2}-r_{1}\right) \\
\operatorname{deg}\left(r_{2}-r_{1}\right)=\max \left(\operatorname{deg} r_{1}, \operatorname{deg} r_{2}\right)<\operatorname{deg} g
\end{array}
$$

$\operatorname{deg}\left(q_{1}-q_{2}\right) \geq 0$ by the definition of degree.
Thus the equality cannot hold.

